Code: 20CS3402
II B.Tech - II Semester - Regular / Supplementary Examinations MAY - 2023

ADVANCED DATA STRUCTURES (COMPUTER SCIENCE \& ENGINEERING)

Duration: 3 hours

Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

			BL	CO	Max. Marks
UNIT-I					
1	a)	Apply linear probing hashing technique to insert the following elements $45,35,16,86$, $26,19,32,18$ into an empty hash table with hash function $\mathrm{f}(\mathrm{x})=\mathrm{x} \% 12$.	L3	CO 2	7 M
	b)	Illustrate Extendible Hashing technique?	L3	CO2	7 M
OR					
2	a)	Demonstrate double hashing with suitable example.	L3	CO 2	7 M
	b)	Define hash function. Demonstrate universal hashing.	L3	CO 2	7 M
UNIT-II					
3	a)	Develop a code to implement insertion operation of max priority heap.	L3	CO3	7 M

	b)	The elements $12,15,18,6,14,20,11,22,16$ are inserted one by one in the given order into a Min-Heap. What is the resultant Min-Heap.	L3	CO3	7 M
OR					
4	What is binomial queue.Explain binomial queue operations with suitable example.		L2	CO1	14 M
UNIT-III					
5	a)	Demonstrate the deletion procedure in AVL tree with example.	L3	CO3	7 M
	b)	Construct a 2-3 tree with the following data items 5,6,8,10,12,15,45,75,23,11,9.	L3	CO3	7 M
OR					
6	List the properties of Red-Black tree. Construct a red-black tree with the following elements $15,20,25,23,14,89,74,65,28,36$.		L3	CO3	14 M
UNIT-IV					
7	a)	Apply dijkstra's algorithm on the above graph.	L3	CO3	10 M
	b)	Discuss about topological sorting.	L2	CO1	4 M
OR					

8	a)	Show the Floyd Warshall's algorithm with example.	L3	CO3	7 M
	b)	Infer can Bellman-ford algorithm applied on directed acyclic graph with suitable example.	L2	CO1	7 M
UNIT-V					
9	a)	Explain about simple union and find algorithm.	L4	CO4	7 M
	b)	Apply the steps in Rabin-Karp pattern matching algorithm with an example for both successful and unsuccessful cases.	L3	CO 2	7 M
OR					
10	$\begin{aligned} & \text { Exp } \\ & \text { witl } \end{aligned}$	lain Knuth-Morris string matching algorithm suitable example.	L4	CO4	14 M

