II B.Tech - II Semester – Regular / Supplementary Examinations MAY - 2023

ADVANCED DATA STRUCTURES (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

UNIT-I 1 a) Apply linear probing hashing technique to insert the following elements 45, 35, 16, 86, 26, 19, 32, 18 into an empty hash table with hash function f(x)=x%12. L3 CO b) Illustrate Extendible Hashing technique? L3 CO OR 2 a) Demonstrate double hashing with suitable L3 CO b) Demonstrate double hashing with suitable L3 CO b) Define hash function. Demonstrate universal L3 CO	Marks27 M								
1a)Apply linear probing hashing technique to insert the following elements 45, 35, 16, 86, 26, 19, 32, 18 into an empty hash table with hash function f(x)=x%12.L3COb)Illustrate Extendible Hashing technique?L3COOR2a)Demonstrate double hashing with suitableL3COb)Define hash function. Demonstrate universalL3CO	2 7 M								
insert the following elements 45, 35, 16, 86, 26, 19, 32, 18 into an empty hash table with hash function f(x)=x%12. b) Illustrate Extendible Hashing technique? L3 CO OR 2 a) Demonstrate double hashing with suitable L3 CO example. b) Define hash function. Demonstrate universal	2 7 M								
26, 19, 32, 18 into an empty hash table with hash function f(x)=x%12. 12 b) Illustrate Extendible Hashing technique? L3 CO OR 2 a) Demonstrate double hashing with suitable L3 CO b) Define hash function. Demonstrate universal L3 CO									
hash function f(x)=x%12.b)Illustrate Extendible Hashing technique?L3OR2a)Demonstrate double hashing with suitableL3COexample.2b)Define hash function. Demonstrate universalL3CO									
b)Illustrate Extendible Hashing technique?L3COOR2a)Demonstrate double hashing with suitableL3COexampleb)Define hash function. Demonstrate universalL3CO									
OR 2 a) Demonstrate double hashing with suitable L3 CO example. b) Define hash function. Demonstrate universal L3 CO									
2a)Demonstrate double hashing with suitableL3COexample.b)Define hash function. Demonstrate universalL3CO	2 7 M								
example.b)Define hash function. Demonstrate universalL3CO	OR								
b) Define hash function. Demonstrate universal L3 CO	2 7 M								
hashing.	2 7 M								
UNIT-II									
3 a) Develop a code to implement insertion L3 CO	3 7 M								
operation of max priority heap.									

Max. Marks: 70

	b)	The elements 12,15,18,6,14,20,11,22,16 are	L3	CO3	7 M
		inserted one by one in the given order into a			
		Min-Heap. What is the resultant Min-Heap.			
		OR			
4	Wh	at is binomial queue.Explain binomial queue	L2	CO1	14 M
	ope	rations with suitable example.			
				11	
		UNIT-III			
5	a)	Demonstrate the deletion procedure in AVL	L3	CO3	7 M
		tree with example.			
	b)	Construct a 2-3 tree with the following data	L3	CO3	7 M
		items 5,6,8,10,12,15,45,75,23,11,9.			
		OR			
6	List the properties of Red-Black tree. Construct			CO3	14 M
	a r	a red-black tree with the following elements			
	15,	20,25,23,14,89,74,65,28,36.			
		UNIT-IV			
7	a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L3	CO3	10 M
		Apply dijkstra's algorithm on the above graph.			
	b)	Discuss about topological sorting.	L2	CO1	4 M
		OR			

8		Show the Floyd Warshall's algorithm with	12	CO^2	7 M				
0	a)	Show the Floyd Warshall's algorithm with	L3	CO3	/ 11/1				
		example.							
	b)	Infer can Bellman-ford algorithm applied on	L2	CO1	7 M				
		directed acyclic graph with suitable							
		example.							
UNIT-V									
9	a)	Explain about simple union and find	L4	CO4	7 M				
		algorithm.							
	b)	Apply the steps in Rabin-Karp pattern	L3	CO2	7 M				
		matching algorithm with an example for							
		both successful and unsuccessful cases.							
OR									
10	Exp	olain Knuth-Morris string matching algorithm	L4	CO4	14 M				
	wit	h suitable example.							